Analysis of African Easterly Wave Structures and Their Role in Influencing Tropical Cyclogenesis

Author: Susanna Hopsch, C.D. Thorncroft and K.R. Tyle
Date: 
April 11, 2010
Type: 
Journal Article
Venue: 
Monthly Weather Review
Citation: 

Hopsch, Susanna B., Chris D. Thorncroft, Kevin R. Tyle, 2010: Analysis of African Easterly Wave Structures and Their Role in Influencing Tropical Cyclogenesis. Mon. Wea. Rev., 138, 1399–1419.
doi: 10.1175/2009MWR2760.1

Composite structures of African easterly waves (AEWs) that develop into named tropical cyclones in the Atlantic are compared and contrasted with nondeveloping AEWs using the 40-yr ECMWF Re-Analysis (ERA-40) data and satellite brightness temperature between 1979 and 2001. Developing AEWs are characterized by a more distinctive cold-core structure two days before reaching the West African coast. As they move westward, the convective activity increases further in the vicinity of the Guinea Highlands region. At the same time the AEW trough increases its vorticity at low levels consistent with a transformation toward a more warm-core structure before it reaches the ocean. As the AEW moves over the ocean convection is maintained in the trough, consistent with the observed tropical cyclogenesis. The nondeveloping AEW has a similar evolution before reaching the coast except that the amplitudes are weaker and there is less convective activity in the Guinea Highlands region. The nondeveloping AEW composite has a more prominent dry signal just ahead of the AEW trough at mid- to upper levels. It is argued that the weaker west coast development (i.e., reduced convective activity and reduced spinup at low levels) combined with the closer proximity of the trough to mid- to upper-level dry air aloft are consistent with the nondevelopment. The most intense nondeveloping AEWs were characterized by more intense convection and stronger mid- and low-level synoptic circulations at the West African coast than the developing AEWs. The analysis strongly suggests that the lack of development was due to the presence of dry mid- to upper-level air just ahead of the AEW trough that may have been enhanced because of equatorward advection of dry air by the AEW itself.