A Consistent Ribbon Structure for the Io Plasma Torus at the Voyager 1 and Galileo J0 Epochs

Type: Journal Article

Venue: Bulletin of the American Astronomical Society


Smyth, W.H., C.A. Peterson, and M. L. Marconi (2008) A Consistent Ribbon Structure for the Io Plasma Torus at the Voyager 1 and Galileo J0 Epochs, BAAS 40, 460.

Resource Link: http://adsabs.harvard.edu/abs/2008DPS....40.3508S

The peak density structure for the plasma torus electrons and heavy ions occurs radially near and inside of Io's orbit. This structure has been documented remotely by ground-based observations at the dawn and dusk ansae in S+ (6716 Å, 6731 Å) and S++ (9531 Å) emissions and from Voyager 2 UVS observations at the 35 degree pre-dawn and pre-dusk ansae for S++ (685Å) emission. It has also been documented by in situ observations by the Voyager 1 PLS instrument for the O+, S+, S++ ions and electrons at pre-dusk local-times and by the Galileo PWS and PLS instruments for electrons at noon local-time. The focus of this presentation is to compare the radial location of the peak density structure for the S+ ions (so-called ribbon feature) acquired at different local-times from ground-based (Schneider and Trauger, Ap. J. 450, 450, 1995) and Voyager (Bagenal, JGR 99, 11043, 1994) measurements and inferred from Galileo measurements (Gurnett et al., Science, 274, 391, 1996; Frank and Paterson, JGR 99, 11043, 2000). This is accomplished by the application of a newly developed more accurate, four-dimensional (three spatial dimensions and local-time) empirical model for the plasma torus. This model includes System III longitudinal asymmetries and also local-time asymmetries created by a dawn-dusk electric field that is equipotential along the magnetic field lines and has an adjustable magnitude and direction. It is found that all of the measurements can be fit by a set of different magnitudes and directions for the dawn-dusk electric field and that a limited range of such solutions is possible for the three measurements that allow a consistent radial location for the S+ ribbon feature, resolving a long-standing issue for the plasma torus (Bagenal et al., GRL 24, 2119, 1997). Information will be presented to illustrate the nature of these solutions.