Dynamics and forcing of interannual regional steric sea level variability

Christopher G. Piecuch and Rui M. Ponte
Atmospheric and Environmental Research, Inc.,
Lexington, MA USA

2011 WCRP Open Science Conference, Denver
Session B3: Ocean Dynamics and Sea-level
Interannual RMS variability from altimetry*

...what processes underlie these patterns?

*Merged TOPEX/Poseidon/Jason data ‘93-’04, smoothed in space (5°) and time (1 yr)
• Mechanisms of sea level variability
 – **Forcing:** external atmospheric driving (i.e., winds and buoyancy) and intrinsic ocean processes.
 – **Dynamics:** density advection, wave propagation, local Ekman pumping, mixing, etc.

• An ocean state estimate
 – ECCO-GODAE v2.216 (1993-2004)*
 – MITgcm, 80°S-80°N; 1°×1° grid; 23 vertical layers
 – Fit to altimetry, hydrography and other datasets
 – Satisfies governing thermo/dynamics and conservation laws (momentum, energy, etc.)

*Wunsch, Ponte & Heimbach (2007) J. Climate 20
Hydrostatic condition:

\[\zeta = \zeta_p + \zeta_{bp} \]

...what governs the steric changes?
Forcing experiments*

<table>
<thead>
<tr>
<th>Wind forcing</th>
<th>Buoyancy forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Variable</td>
<td>Fully Variable</td>
</tr>
<tr>
<td>Climatological</td>
<td>Climatological</td>
</tr>
</tbody>
</table>

- Influence of interannual forcing mechanisms:
 - Full: \(\zeta^F = \zeta^{VWVB} \)
 - Wind: \(\zeta^W = \zeta^{VWCB} - \zeta^{CWCB} \)
 - Buoy.: \(\zeta^B = \zeta^{CWVB} - \zeta^{CWCB} \)
 - Intr.: \(\zeta^I = \zeta^{CWCB} \)

- Assume linearity:
 - \(\zeta^F = \zeta^W + \zeta^B + \zeta^I \)

Forcing represents NCEP/NCAR fields adjusted via ECCO optimization
Forcing of steric variability

Full Forcing ζ^F

Wind Forcing ζ^W

Buoyancy Driving ζ^B

Intrinsic Generation ζ^I

0 2 4 6 8 10 cm
Wind-forced variability

Steric height budget:

\[\zeta_\rho = A + M + F \]

Piecuch & Ponte (2011) GRL 38
Tropical Pacific
15°S-5°S; 130°W-90°W

\[\zeta_p \text{ FULL} \]
\[\zeta_p \text{ WIND} \]
\[\zeta_p \text{ BUOY.} \]
\[\zeta_p^F - (\zeta_p^W + \zeta_p^B) \]
\[\zeta_p \text{ BUOY.} \]
FORCING
ADVECTION
MIXING
Subtropical Indian intrinsic variability

Time series @ 27.5°S, 69.5°E

\(\zeta_\rho \) FULL \(\zeta_\rho \) INTRINSIC
\(\zeta_\rho \) BUOYANCY+ \(\zeta_\rho \) WIND
\(\zeta_\rho \) RESIDUAL
Summary

- Interannual ζ variability mostly represents steric changes resulting from wind variations and associated large-scale advection patterns.
- However, other forcing mechanisms and dynamics can be important regionally:
 - Local and remote buoyancy signals in tropics/subtropics.
 - Parameterized sub-grid-scale fluxes in extratropics.
 - Intrinsic variability in subtropics.
- Need better understanding and accurate modeling of all these processes to simulate and project low frequency changes in regional sea level:
 - Errors incurred if buoyancy forcing is assumed to have no remote or dynamical effect.
 - Realism of parameterized sub-grid-scale mixing in coarse resolution models.
Comparison interannual RMS variability

ECCO

Altimetry

![Comparison of ECCO and Altimetry](image)
Checking decomposition

Residual RMS ζ_ρ

Wind Forcing ζ_ρ^W

Buoyancy Driving ζ_ρ^B

Intrinsic Generation ζ_ρ^I
Mixing Components

Laplacian Diffusion (LAP)

G Gent-McWilliams/Redi (GMR)

Nonlocal K profile (KPP)

Mixing terms:

\[M = \text{LAP} + \text{GMR} + \text{KPP} \]
Buoyancy-driven changes

Total Variability ζ_p^B

Surface Buoyancy Exchange F^B

Advective Transport A^B

Diffusive Transport M^B
Tropical Atlantic
20°S-5°N; 30°W-10°E

\[\zeta_\rho \text{ FULL} \]
\[\zeta_\rho \text{ WIND} \]
\[\zeta_\rho \text{ BUOY.} \]
\[\zeta_\rho^F - (\zeta_\rho^W + \zeta_\rho^B) \]
\[\zeta_\rho \text{ BUOY.} \]
FORCING
ADVECTION
MIXING

Graph showing variability in meters over years from 1993 to 2005.