

Surface Solar Irradiance: Cloud Observations and Radiative Transfer Modeling

A Research Perspective on Solar Forecast Issues

Atmospheric and Environmental Research

- Provide basic and applied research services to government and industry
 - We enable the effective integration of leading research capabilities across all environmental and weather disciplines to develop data, operational systems, and critical communications for organizational response and management initiatives.
- Leaders in across the spectrum (UV, EO, IR, RF) radiative transfer (RT) simulation modeling for sensor systems (satellite/airborne/ground based)
- Leaders in numerical modeling, analysis, and prediction of the environment
- Scientific integrity of a major research institution coupled with the programmatic experience and efficiency of an ISO-9001 certified contractor
- Worldwide capabilities include:
 - Weather/climate predictions
 - Energy demand forecasting
 - Hurricane forecasting
 - Air quality assessments and predictions
 - Radiative transfer modeling

- Satellite remote sensing
- Cloud property determination and forecasting
- Flood monitoring
- Space weather observations/forecasting
- Oceanography

The role of satellite data in cloud detection and analysis

- Environmental satellites provide an optimal platform for observing global cloud cover
 - Hemispheric to global coverage
 - High spatial resolution: on the order of a few km
 - Sufficient spectral coverage
 - Sensor channel wavelengths selected to provide high information content on clouds and surface characteristics
 - New/planned sensors provide additional channels/information content
 - Polar and Geostationary orbits highly complementary
 - Polar provides most frequent updates and greatest overlap at high latitudes
 - Geostationary distortion is minimized and overlap greatest at low latitudes

Clouds impact numerous systems and missions

- AER has 20+ years experience developing satellite-based cloud detection, analysis and forecast algorithms for the Air Force (AFRL and AFWA)
 - Cooperative Research and Development Agreement (CRDA)
 provides access to all unclassified satellite and weather data
 - AER developed the current Air Force operational cloud analysis and forecasting algorithms
 - Current versions operational at AER provide real-time cloud optical properties
 - Physical retrieval approach using multispectral data
 - Applied to GOES, Meteosat, and MTSat data

Cloud optical property modules: microphysics necessary for radiative transfer calculations

Composite Imagery

Cloud Thickness

Particle Size

LWP/IWP

Forecasts of 3D Cloud Distribution

- Uses back-trajectory approach to forecast cloud movement for specified time period
 - 2-minute intervals out to 30 minutes

Cloud forecast validation using subsequent cloud analysis

State-of-the-Science Radiation Code: RRTMG

- RRTMG developed as part of DOE ARM program
- Best fast RT code in existence as shown in peer-reviewed RT model intercomparisons
- Used in prediction codes worldwide: RUC, WRF, NCEP GFS and CFS, NCAR CESM/CAM5, ECMWF IFS

Use RT model to compute surface solar irradiance from atmospheric information

- Perform radiative transfer calculation to compute irradiance reaching the surface
 - Can generate broadband as well as narrow-band irradiances
 - Could be tuned to specific spectral response of panels
- NASA and DOE funding to port AER RT models (including RRTMG) to graphical processing unit (GPU)

RRTMG validated against high spectral resolution model

Conclusions

- Advanced cloud analysis techniques provide enhanced utility for satellite data
 - Physical retrieval approach for cloud optical properties
 - Near global coverage ~15 minutes, improving with new systems
 - AFWA archive datasets and algorithms, with AER updates for cloud optical properties could be used to reprocess historical data
- Need a better understanding of radiative transfer as applied to the solar forecast problem
 - Radiative closure studies to validate models used and better understand uncertainties and limitations
 - Forecast errors should be limited by the uncertainties, not the radiation calculation

